Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 23(17): e2200323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365936

RESUMO

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Assuntos
Proteínas , Reprodutibilidade dos Testes , Proteínas/metabolismo , Ligação Proteica
2.
Nucleic Acids Res ; 51(W1): W298-W304, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140054

RESUMO

Computational docking is an instrumental method of the structural biology toolbox. Specifically, integrative modeling software, such as LightDock, arise as complementary and synergetic methods to experimental structural biology techniques. Ubiquitousness and accessibility are fundamental features to promote ease of use and to improve user experience. With this goal in mind, we have developed the LightDock Server, a web server for the integrative modeling of macromolecular interactions, along with several dedicated usage modes. The server builds upon the LightDock macromolecular docking framework, which has proved useful for modeling medium-to-high flexible complexes, antibody-antigen interactions, or membrane-associated protein assemblies. We believe that this free-to-use resource will be a valuable addition to the structural biology community and can be accessed online at: https://server.lightdock.org/.


Assuntos
Inteligência Artificial , Biologia Computacional , Substâncias Macromoleculares , Simulação de Acoplamento Molecular , Biologia Computacional/instrumentação , Biologia Computacional/métodos , Internet , Substâncias Macromoleculares/química , Software
3.
Bioinform Adv ; 3(1): vbad012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789292

RESUMO

Motivation: Protein-protein interactions drive many relevant biological events, such as infection, replication and recognition. To control or engineer such events, we need to access the molecular details of the interaction provided by experimental 3D structures. However, such experiments take time and are expensive; moreover, the current technology cannot keep up with the high discovery rate of new interactions. Computational modeling, like protein-protein docking, can help to fill this gap by generating docking poses. Protein-protein docking generally consists of two parts, sampling and scoring. The sampling is an exhaustive search of the tridimensional space. The caveat of the sampling is that it generates a large number of incorrect poses, producing a highly unbalanced dataset. This limits the utility of the data to train machine learning classifiers. Results: Using weak supervision, we developed a data augmentation method that we named hAIkal. Using hAIkal, we increased the labeled training data to train several algorithms. We trained and obtained different classifiers; the best classifier has 81% accuracy and 0.51 Matthews' correlation coefficient on the test set, surpassing the state-of-the-art scoring functions. Availability and implementation: Docking models from Benchmark 5 are available at https://doi.org/10.5281/zenodo.4012018. Processed tabular data are available at https://repository.kaust.edu.sa/handle/10754/666961. Google colab is available at https://colab.research.google.com/drive/1vbVrJcQSf6\_C3jOAmZzgQbTpuJ5zC1RP?usp=sharing. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

4.
Bioinform Adv ; 2(1): vbab042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699405

RESUMO

Herein, we present the results of a machine learning approach we developed to single out correct 3D docking models of protein-protein complexes obtained by popular docking software. To this aim, we generated 3 × 10 4 docking models for each of the 230 complexes in the protein-protein benchmark, version 5, using three different docking programs (HADDOCK, FTDock and ZDOCK), for a cumulative set of ≈ 7 × 10 6 docking models. Three different machine learning approaches (Random Forest, Supported Vector Machine and Perceptron) were used to train classifiers with 158 different scoring functions (features). The Random Forest algorithm outperformed the other two algorithms and was selected for further optimization. Using a features selection algorithm, and optimizing the random forest hyperparameters, allowed us to train and validate a random forest classifier, named COnservation Driven Expert System (CoDES). Testing of CoDES on independent datasets, as well as results of its comparative performance with machine learning methods recently developed in the field for the scoring of docking decoys, confirm its state-of-the-art ability to discriminate correct from incorrect decoys both in terms of global parameters and in terms of decoys ranked at the top positions. Supplementary information: Supplementary data are available at Bioinformatics Advances online. Software and data availability statement: The docking models are available at https://doi.org/10.5281/zenodo.4012018. The programs underlying this article will be shared on request to the corresponding authors.

5.
BMC Bioinformatics ; 21(Suppl 8): 262, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938371

RESUMO

BACKGROUND: Properly scoring protein-protein docking models to single out the correct ones is an open challenge, also object of assessment in CAPRI (Critical Assessment of PRedicted Interactions), a community-wide blind docking experiment. We introduced in the field CONSRANK (CONSensus RANKing), the first pure consensus method. Also available as a web server, CONSRANK ranks docking models in an ensemble based on their ability to match the most frequent inter-residue contacts in it. We have been blindly testing CONSRANK in all the latest CAPRI rounds, where we showed it to perform competitively with the state-of-the-art energy and knowledge-based scoring functions. More recently, we developed Clust-CONSRANK, an algorithm introducing a contact-based clustering of the models as a preliminary step of the CONSRANK scoring process. In the latest CASP13-CAPRI joint experiment, we participated as scorers with a novel pipeline, combining both our scoring tools, CONSRANK and Clust-CONSRANK, with our interface analysis tool COCOMAPS. Selection of the 10 models for submission was guided by the strength of the emerging consensus, and their final ranking was assisted by results of the interface analysis. RESULTS: As a result of the above approach, we were by far the first scorer in the CASP13-CAPRI top-1 ranking, having high/medium quality models ranked at the top-1 position for the majority of targets (11 out of the total 19). We were also the first scorer in the top-10 ranking, on a par with another group, and the second scorer in the top-5 ranking. Further, we topped the ranking relative to the prediction of binding interfaces, among all the scorers and predictors. Using the CASP13-CAPRI targets as case studies, we illustrate here in detail the approach we adopted. CONCLUSIONS: Introducing some flexibility in the final model selection and ranking, as well as differentiating the adopted scoring approach depending on the targets were the key assets for our highly successful performance, as compared to previous CAPRI rounds. The approach we propose is entirely based on methods made available to the community and could thus be reproduced by any user.


Assuntos
Biologia Computacional/métodos , Ligação Proteica/genética , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Algoritmos , Humanos , Conformação Proteica
6.
PLoS One ; 13(5): e0195654, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29718932

RESUMO

This work aims for modeling and simulating the metastasis of cancer, via the analogy between the cancer process and the board game Go. In the game of Go, black stones that play first could correspond to a metaphor of the birth, growth, and metastasis of cancer. Moreover, playing white stones on the second turn could correspond the inhibition of cancer invasion. Mathematical modeling and algorithmic simulation of Go may therefore benefit the efforts to deploy therapies to surpass cancer illness by providing insight into the cellular growth and expansion over a tissue area. We use the Ising Hamiltonian, that models the energy exchange in interacting particles, for modeling the cancer dynamics. Parameters in the energy function refer the biochemical elements that induce cancer birth, growth, and metastasis; as well as the biochemical immune system process of defense.


Assuntos
Jogos Recreativos , Modelos Biológicos , Neoplasias/imunologia , Neoplasias/patologia , Proliferação de Células , Metabolismo Energético , Metástase Neoplásica , Neoplasias/metabolismo
7.
Adv Protein Chem Struct Biol ; 110: 203-249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29412997

RESUMO

A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein-protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein-protein interactions, or providing modeled structural data for drug discovery targeting protein-protein interactions.


Assuntos
Pesquisa Biomédica , Biologia Computacional , Simulação de Acoplamento Molecular , Proteínas , Descoberta de Drogas , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas/química , Proteínas/metabolismo
8.
PLoS One ; 12(8): e0183643, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28841721

RESUMO

Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.


Assuntos
Mutação de Sentido Incorreto , Proteínas/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Polimorfismo de Nucleotídeo Único , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas ras/metabolismo
9.
Proteins ; 85(7): 1287-1297, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28342242

RESUMO

Protein-protein interactions play fundamental roles in biological processes including signaling, metabolism, and trafficking. While the structure of a protein complex reveals crucial details about the interaction, it is often difficult to acquire this information experimentally. As the number of interactions discovered increases faster than they can be characterized, protein-protein docking calculations may be able to reduce this disparity by providing models of the interacting proteins. Rigid-body docking is a widely used docking approach, and is often capable of generating a pool of models within which a near-native structure can be found. These models need to be scored in order to select the acceptable ones from the set of poses. Recently, more than 100 scoring functions from the CCharPPI server were evaluated for this task using decoy structures generated with SwarmDock. Here, we extend this analysis to identify the predictive success rates of the scoring functions on decoys from three rigid-body docking programs, ZDOCK, FTDock, and SDOCK, allowing us to assess the transferability of the functions. We also apply set-theoretic measure to test whether the scoring functions are capable of identifying near-native poses within different subsets of the benchmark. This information can provide guides for the use of the most efficient scoring function for each docking method, as well as instruct future scoring functions development efforts. Proteins 2017; 85:1287-1297. © 2017 Wiley Periodicals, Inc.


Assuntos
Modelos Estatísticos , Simulação de Acoplamento Molecular/estatística & dados numéricos , Proteínas/química , Projetos de Pesquisa , Benchmarking , Internet , Mapeamento de Interação de Proteínas , Software
10.
Bioinformatics ; 33(12): 1806-1813, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28200016

RESUMO

MOTIVATION: In order to function, proteins frequently bind to one another and form 3D assemblies. Knowledge of the atomic details of these structures helps our understanding of how proteins work together, how mutations can lead to disease, and facilitates the designing of drugs which prevent or mimic the interaction. RESULTS: Atomic modeling of protein-protein interactions requires the selection of near-native structures from a set of docked poses based on their calculable properties. By considering this as an information retrieval problem, we have adapted methods developed for Internet search ranking and electoral voting into IRaPPA, a pipeline integrating biophysical properties. The approach enhances the identification of near-native structures when applied to four docking methods, resulting in a near-native appearing in the top 10 solutions for up to 50% of complexes benchmarked, and up to 70% in the top 100. AVAILABILITY AND IMPLEMENTATION: IRaPPA has been implemented in the SwarmDock server ( http://bmm.crick.ac.uk/∼SwarmDock/ ), pyDock server ( http://life.bsc.es/pid/pydockrescoring/ ) and ZDOCK server ( http://zdock.umassmed.edu/ ), with code available on request. CONTACT: moal@ebi.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Armazenamento e Recuperação da Informação/métodos , Simulação de Acoplamento Molecular , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Software , Internet
11.
Arch Insect Biochem Physiol ; 84(1): 1-14, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23797988

RESUMO

The induction of DNA synthesis in various tissues of Anopheles albimanus, in response to challenge with Saccharomyces cerevisiae, Micrococcus luteus, and Serratia marcescens, was analyzed by 5-bromo-2-deoxy-uridine (BrdU) incorporation. Microorganism-inoculated mosquitoes were fed with a sucrose solution containing BrdU and maintained alive for 5 days. Alternatively, abdominal carcasses of microorganisms-inoculated mosquitoes were cultivated in Roswell Park Memorial Institute (RPMI) medium supplemented with BrdU for 5 days. Control groups were inoculated with RPMI alone. In both experiments, DNA synthesis, evidenced by epifluorescence with an anti-BrdU fluorescein-labeled antibody, occurred in fat body, epithelial cells of pleural membranes, dorsal vessel, and the oviducts. Relative quantification of DNA synthesis, evaluated by ELISA using an anti-BrdU peroxidase-labeled antibody, was higher in abdomen tissues of microorganisms-inoculated mosquitoes than controls in in vitro and in vivo experiments. The intensity of DNA synthesis varied among the different microorganism challenges, but was higher in in vivo experiments, compared to cultured samples. These differences in DNA synthesis suggest a compartmentalization of the immune response, probably mediated by different signaling pathways.


Assuntos
Anopheles/imunologia , Anopheles/metabolismo , DNA/biossíntese , Animais , Anopheles/genética , Anopheles/microbiologia , Bromodesoxiuridina/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Micrococcus luteus/fisiologia , Especificidade de Órgãos , Saccharomyces cerevisiae/fisiologia , Serratia marcescens/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...